Abstract

The vascular access used in hemodialysis can suffer from numerous complications, which may lead to failure of the access, patient morbidity, and significant costs. The flow field in the region of the venous needle may be a source of damaging hemodynamics and hence adverse effects on the fistula. In this study, the venous needle flow has been considered, using three-dimensional computational methods. Four scenarios where the venous needle flow could potentially influence dialysis treatment outcome were identified and examined: Variation of the needle placement angle (10°, 20°, 30°), variation of the blood flow rate settings (200, 300, 400 mL/min), variation of the needle depth (top, middle, bottom), and the inclusion of a back eye in the needle design. The presence of the needle has significant effect on the flow field, with different scenarios having varying influence. In general, wall shear stresses were elevated above normal physiological values, and increased presence of areas of low velocity and recirculation-indicating increased likelihood of intimal hyperplasia development-were found. Computational results showed that the presence of the venous needle in a hemodialysis fistula leads to abnormal and potentially damaging flow conditions and that optimization of needle parameters could aid in the reduction of vascular access complications. Results indicate shallow needle angles and lower blood flow rates may minimize vessel damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call