Abstract

The objective of this paper is to investigate the complex three-dimensional vortex structures created by the interaction of gas jet with liquid crossflow. A high-speed camera technique is used to record the evolution patterns of the jet cavity. High-precision numerical methods with the Chorin projection method and volume of fluid method (VOF) are employed to understand the complex flow features associated with jet–freestream interaction. The results present that three distinct regions of the jet cavity could be observed, referred to as the transparent cavity region (TCR), the transition region (TR), and the foam cavity region (FCR). The interaction between the flow of gas jet and liquid crossflow creates multiscale vortex structures, including the counter-rotating vortex pair (CVP), the upper-deck counter-rotating vortex pair (up-CVP), the horseshoe vortices, the shear layer vortices, and the fine-scale vortices, respectively. The relationship between multiscale vortex structures and the pulsation of the gas-liquid interface is analyzed in detail by analyzing the spatial distribution of different vortex structures and the fluctuations of the gas-liquid interface. In addition, the effect of the gas entrainment coefficient on cavity flow patterns and vortex structures is compared and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.