Abstract

Mammalian cells produce inflammatory cytokines and chemokines in response to innate immune signals and their expression is tightly regulated. Chemokine (C-X-C motif) ligand 2 (CXCL2), also known as macrophage inflammatory protein 2-alpha (MIP2-alpha), is an inflammatory chemokine belonging to the CXC chemokine family. CXCL2 is chemotactic for neutrophils and elevated expression of CXCL2 is associated with many inflammatory and autoimmune diseases. The Fli-1 gene belongs to the large Ets transcription factor family, whose members regulate a wide variety of cellular functions including the immune response. In this study, we demonstrate that endothelial cells transfected with Fli-1 specific siRNA produce significantly less CXCL2 compared to cells transfected with control siRNA after stimulation by the Toll-like receptor (TLR) 4 ligands, lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNF-α). The production of CXCL2 in endothelial cells stimulated with LPS stimulation is dose-dependent. We found that Fli-1 binds to the CXCL2 promoter as established by Chromatin immunoprecipitation‎ (ChIP) assay. Transient transfection assays show that Fli-1 drives transcription from the CXCL2 promoter in a dose-dependent manner and Fli-1 regulates the expression of CXCL2 largely by directly binding to the promoter. Targeted knockdown and transient transfection experiments suggest that both Fli-1 and the p65 subunit of NF-κB affect the activation of CXCL2 in an additive manner. These results indicate that Fli-1 is a novel, critical transcription factor that regulates the expression of the inflammatory chemokine CXCL2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call