Abstract
Novel composite glazing panels provide an opportunity to significantly reduce the weight and depth of glazed facades and simultaneously minimize the visual and spatial bulkiness of conventional facade framing systems. However the mechanical response of these novel composite glazing panels is poorly understood and there is no published data on the flexural response of large scale panels. In this research, medium scale (700-mm long and 300-mm wide) and large scale (3500-mm long and 1500-mm wide) composite glazing panels were fabricated and tested in bending up to failure. Recently developed analytical model for composite sandwich panels was also implemented on the medium and large scale panels. The experimental test data shows that shear-lag effects can be significant in large scale panels and can reduce their effective widths by about 40%. The analytical model provided a good fit of experimental results when the effective width was reduced according to strain gauge measurements. Neglecting shear-lag effect is unsafe and would underestimate deflections and stresses by approximately 40%. Further research is required to quantify the shear-lag effects, and the corresponding variation of effective widths, along the length of composite glazing panels and the influence of load distribution and boundary conditions on the effective thickness of the glass panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.