Abstract

This paper deals with the flexural instability of flexible spinning cylinders partially filled with viscous fluid. Using the linearized Navier–Stokes equations for the incompressible flow, a two-dimensional model is developed for fluid motion. The resultant force exerted on the flexible cylinder wall as the result of the fluid motion is calculated as a function of lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton principle, the governing equations of flexural motion of the rotary flexible cylinder mounted on general viscoelastic supports are derived. Then combining the equations describing the fluid force on the flexible cylinder with the structural dynamics equations, the coupled-field governing equations of the system are obtained. A numerical technique is devised with the obtained model for stability analysis of the flexible cylinder and some examples are presented. The effect of material viscoelasticity and structural damping on the stability margins of the flexible cylinder is examined, and some parameter studies on the governing parameters of the critical spinning speed are carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.