Abstract

AbstractThis paper introduces the Flexible Global Ocean‐Atmosphere‐Land System Model: Grid‐Point Version 3 (FGOALS‐g3) and evaluates its basic performance based on some of its participation in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) experiments. Our results show that many significant improvements have been achieved by FGOALS‐g3 in terms of climatological mean states, variabilities, and long‐term trends. For example, FGOALS‐g3 has a small (−0.015°C/100 yr) climate drift in 700‐yr preindustrial control (piControl) runs and smaller biases in climatological mean variables, such as the land/sea surface temperatures (SSTs) and seasonal soil moisture cycle, compared with its previous version FGOALS‐g2 during the historical period. The characteristics of climate variabilities, for example, Madden‐Julian oscillation (MJO) eastward/westward propagation ratios, spatial patterns of interannual variability of tropical SST anomalies, and relationship between the East Asian Summer Monsoon and El Niño–Southern Oscillation (ENSO), are well captured by FGOALS‐g3. In particular, the cooling trend of globally averaged surface temperature during 1940–1970, which is a challenge for most CMIP3 and CMIP5 models, is well reproduced by FGOALS‐g3 in historical runs. In addition to the external forcing factors recommended by CMIP6, anthropogenic groundwater forcing from 1965 to 2014 was incorporated into the FGOALS‐g3 historical runs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call