Abstract
As an alternative to the Frequentist p-value, the Bayes factor (or ratio of marginal likelihoods) has been regarded as one of the primary tools for Bayesian hypothesis testing. In recent years, several researchers have begun to re-analyze results from prominent medical journals, as well as from trials for FDA-approved drugs, to show that Bayes factors often give divergent conclusions from those of p-values. In this paper, we investigate the claim that Bayes factors are straightforward to interpret as directly quantifying the relative strength of evidence. In particular, we show that for nested hypotheses with consistent priors, the Bayes factor for the null over the alternative hypothesis is the posterior mean of the likelihood ratio. By re-analyzing 39 results previously published in the New England Journal of Medicine, we demonstrate how the posterior distribution of the likelihood ratio can be computed and visualized, providing useful information beyond the posterior mean alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.