Abstract

The red velvet mite, Balaustium murorum (Hermann), is a pollenophagous free-living mite with a flashy red body. This mite occurs in early spring and lives on sunny surfaces of human-made structures, such as concrete. Hence, it is inevitably exposed to a harsh environment due to solar ultraviolet-B (UV-B) radiation and radiant heat, which cause oxidative stress via the production of reactive oxygen species. The spider mite Panonychus citri that resides on upper leaf surfaces accumulates synthesized keto-carotenoids to protect against oxidative stress. Therefore, we evaluated carotenoid composition in the red pigment of B. murorum. To identify major carotenoids, we performed a high-performance liquid chromatography analysis of intact and de-esterified pigments of B. murorum females. The flashy red pigments of B. murorum consisted of the highly abundant keto-carotenoids astaxanthin and 3-hydroxyechinenone (60 and 38% of major carotenoids, respectively), and a small amount of β-carotene (2%). Although P. citri is an astaxanthin-rich species, the astaxanthin concentration (per protein) in B. murorum is 127-fold that in P. citri. Due to their high antioxidant activities, those keto-carotenoids probably contribute to the survival of B. murorum in the harsh environment caused by solar UV-B radiation and radiant heat in inorganic habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call