Abstract

PurposeAmblyopes suffer a defect in temporal processing, presumably because of a neural delay in their visual processing. By measuring flash-lag effect (FLE), we investigate whether the amblyopic visual system could compensate for the intrinsic neural delay due to visual information transmissions from the retina to the cortex.MethodsEleven adults with amblyopia and 11 controls with normal vision participated in this study. We assessed the monocular FLE magnitude for each subject by using a typical FLE paradigm: a bar moved horizontally, while a flashed bar briefly appeared above or below it. Three luminance contrasts of the flashed bar were tested: 0.2, 0.6, and 1.ResultsAll participants, controls and those with amblyopia, showed a typical FLE. However, the FLE magnitude of participants with amblyopia was significantly shorter than that of the control participants, for both their amblyopic eye (AE) and fellow eye (FE). A nonsignificant difference was found in FLE magnitude between the AE and the FE.ConclusionsWe demonstrate a reduced FLE both in the AE as well as the FE of patients with amblyopia, suggesting a global visual processing deficit. We suggest it may be attributed to a more limited spatiotemporal extent of facilitatory anticipatory activity within the amblyopic primary visual cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call