Abstract

Abstract We report new simultaneous X-ray and radio continuum observations of 3FGL J0427.9−6704, a candidate member of the enigmatic class of transitional millisecond pulsars. These XMM-Newton and Australia Telescope Compact Array observations of this nearly edge-on, eclipsing low-mass X-ray binary were taken in the sub-luminous disk state at an X-ray luminosity of erg s−1. Unlike the few well-studied transitional millisecond pulsars, which spend most of their disk state in a characteristic high or low accretion mode with occasional flares, 3FGL J0427.9−6704 stayed in the flare mode for the entire X-ray observation of ∼20 hr, with the brightest flares reaching ∼2 × 1034 erg s−1. The source continuously exhibited flaring activity on timescales of ∼10–100 s in both the X-ray and optical/ultraviolet (UV). No measurable time delay between the X-ray and optical/UV flares is observed, but the optical/UV flares last longer, and the relative amplitudes of the X-ray and optical/UV flares show a large scatter. The X-ray spectrum can be well-fit with a partially absorbed power law (Γ ∼ 1.4–1.5), perhaps due to the edge-on viewing angle. Modestly variable radio continuum emission is present at all epochs, and is not eclipsed by the secondary, consistent with the presence of a steady radio outflow or jet. The simultaneous radio/X-ray luminosity ratio of 3FGL J0427.9−6704 is higher than any known transitional millisecond pulsars and comparable to that of stellar-mass black holes of the same X-ray luminosity, providing additional evidence that some neutron stars can be as radio-loud as black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.