Abstract

As far as the flame-retardant polyester fibers are concerned, the copolymerization of phosphorus retardants is the most common method. But a serious problem is that the phosphorus-containing polymer is easily hydrolyzed. We investigated the flame retardancy and the hydrolysis properties of two poly(ethylene terephthalate) (PET) fibers, one with a phosphorus compound as a side chain (side-chain type: HEIM® Toyobo Co., Ltd.), and one with a phosphorus compound inserted in the polymer backbone (main-chain type). Both types had almost the same properties of fibers and flame retardancy, but the main-chain type was hydrolyzed about two times faster than the side-chain type, and led to a decrease of toughness immediately. This difference of hydrolysis properties between main-chain type and side-chain type depends on whether a phosphonate ester bond is placed in the polymer backbone or the pendant site. In the case of the main-chain type, the scission of the polymer backbone chain occurs by hydrolysis of phosphonate ester bonds; however, in the case of the side-chain type, this does not occur. These results demonstrate that the flame-retardant polyester fiber with the side-chain type modifier gives sufficient flame retardancy and excellent hydrolysis resistance. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1134–1138, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.