Abstract

AbstractThis paper presents the current understanding of the flame retardant mechanism of Casico™. The study includes the flame retardant effect of each individual component: ethylene–acrylate copolymer, chalk and silicone elastomer, as well as the formation of an intumescent structure during heating. The flame retardant properties were investigated by cone calorimetry and oxygen index tests. To obtain insight into the flame retardant mechanism, heat treatment under different conditions has also been performed. The results indicate that the flame retardant mechanism of Casico is complex and is related to a number of reactions, e.g. ester pyrolysis of acrylate groups, formation of carbon dioxide by reaction between carboxylic acid and chalk, ionomer formation and formation of an intumescent structure stabilized by a protecting char. Special emphasis is given to the formation of the intumescent structure and its molecular structure as evaluated from 13C MAS‐NMR and 29Si MAS‐NMR, ESCA and XRD analysis. After treatment at 500°C the intumescent structure consists mainly of silicon oxides and calcium carbonate and after treatment at 1000°C the intumescent structure consists of calcium silicate, calcium oxide and calcium hydroxide. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.