Abstract

Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk. Effective management is hampered by a lack of syntheses summarising the magnitude of, and variation in inbreeding depression. Here we describe the nature and scope of the literature examining phenotypic/fitness consequences of inbreeding, to provide a foundation for future syntheses and management. We searched the literature for articles documenting the impact of inbreeding in natural populations. Article titles, abstracts and full-texts were assessed against a priori defined criteria, and information relating to study design, quality and other factors that may influence inbreeding responses (e.g. population size) was extracted from relevant articles. The searches identified 11457 articles, of which 614 were assessed as relevant and included in the systematic map (corresponding to 703 distinct studies). Most studies (663) assessed within-population inbreeding resulting from self-fertilisation or consanguineous pairings, while 118 studies assessed among-population inbreeding due to drift load. Plants were the most studied taxon (469 studies) followed by insects (52 studies) and birds (43 studies). Most studies investigated the effects of inbreeding on components of fitness (e.g. survival or fecundity; 648 studies) but measurements were typically under laboratory/greenhouse conditions (486 studies). Observations were also often restricted to the first inbred generation (607 studies) and studies frequently lacked contextual information (e.g. population size). Our systematic map describes the scope and quality of the evidence describing the phenotypic consequences of inbreeding. The map reveals substantial evidence relating to inbreeding responses exists, but highlights information is still limited for some aspects, including the effects of multiple generations of inbreeding. The systematic map allowed us to define several conservation-relevant questions, where sufficient data exists to support systematic reviews, e.g. How do inbreeding responses vary with population size? However, we found that such syntheses are likely to be constrained by incomplete reporting of critical contextual information. Our systematic map employed the same rigorous literature assessment methods as systematic review, including a novel survey of study quality and thus provides a robust foundation to guide future research and syntheses seeking to inform conservation decision-making.

Highlights

  • Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk

  • The coding criteria for the map were adapted from the Collaboration for Environmental Evidence (CEE) Systematic Review and Evidence Synthesis Guidelines [26] and from existing systematic map reports (e.g. [28])

  • The importance of inbreeding depression in natural populations was questioned by some authors in the 1990s [31,32]

Read more

Summary

Introduction

Threatened species often have small and isolated populations where mating among relatives can result in inbreeding depression increasing extinction risk. Natural populations of many species are faced with an increasing number of pressures from human-driven environmental changes, such as habitat degradation and fragmentation. These pressures can lead to local reductions in population size, and increases in the isolation of populations. The erosion of genetic diversity and the reduced effectiveness of selection (and increased effects of chance) in small populations can limit opportunities for adaptation to changing conditions. The effects of these evolutionary limitations, may only be realised in the long-term and may not represent a significant short-term threat. Even though the detrimental consequences of inbreeding are expressed in the short-term, inbreeding depression is infrequently considered in the conservation of natural populations [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call