Abstract
Choosing a suitable loss function is essential when learning by empirical risk minimisation. In many practical cases, the datasets used for training a classifier may contain incorrect labels, which prompts the interest for using loss functions that are inherently robust to label noise. In this paper, we study the Fisher-Rao loss function, which emerges from the Fisher-Rao distance in the statistical manifold of discrete distributions. We derive an upper bound for the performance degradation in the presence of label noise, and analyse the learning speed of this loss. Comparing with other commonly used losses, we argue that the Fisher-Rao loss provides a natural trade-off between robustness and training dynamics. Numerical experiments with synthetic and MNIST datasets illustrate this performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.