Abstract

Using first-principles density function for molecules method (DMol) and discrete variational method (DVM) based on the density functional theory, we studied the doping effect of Re in Ni 3Al. The structure relaxation and the alloying energy show that Re has a strong Al site preference and leads to the local deformation, which is in agreement with the experimental results and other theoretical results. In addition, the charge density difference and the bond order show that Re can strongly enhance the interatomic interaction between the nearest neighbor atoms. From the density of states and the Pauli spectrum, we find that resonance states and localized states are induced by doping Re, and the doped Re atom forms the hybridized bond with the nearest neighbor atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.