Abstract

This paper investigates the first-order random coefficient integer valued autoregressive process with the occasional level shift random noise based on dual empirical likelihood. The limiting distribution of log empirical likelihood ratio statistic is constructed. Asymptotic convergence and confidence region results of empirical likelihood ratio are given. Hypothesis testing is considering, and maximum empirical likelihood estimation for parameter is acquired. Simulations are given to show that the maximum empirical likelihood estimation is more efficient than the conditional least squares estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.