Abstract
Remodeling of the fibronectin matrix occurs during a variety of pathological and regenerative processes. Cellular generated tensional forces can alter the secondary and tertiary structure of the fibronectin matrix and regulate the exposure of cryptic activities that directly impact cell behavior. In the present study, we evaluated the effect of the partially unfolded Type III fibronectin module, FnIII-1c, on gene expression in dermal fibroblasts. Microarray and PCR analysis indicated that the addition of FnIII-1c to human dermal fibroblasts induced the expression of several inflammatory genes including the cytokines, IL-8 and TNF-α. ELISA analysis indicated that the increased gene expression was accompanied by the secretion of IL-8 and TNF-α protein. FnIII-1c-induced gene expression was preceded by increased phosphorylation of IκB kinase (IKK) and IκBα as well as the nuclear translocation of NFκB. PCR and ELISA analysis showed that inhibition of the NFκB signaling pathway completely blocked the induction of IL-8 and TNF-α. Blocking antibodies to Toll-like receptor 4 inhibited both the activation of the NFκB signaling pathway as well as cytokine expression in response to FnIII-1c. These data suggest that fibronectin matrix remodeling can induce the expression of cytokines by stromal cells present in the tissue microenvironment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.