Abstract

The mitochondrial genome (mitogenome) can provide useful information for analyzing phylogeny and molecular evolution. Scorpaeniformes is one of the most diverse teleostean orders and has great commercial importance. To develop mitogenome data for this important group, we determined the complete mitogenomes of two gurnards Chelidonichthys kumu and Lepidotrigla microptera of Triglidae within Scorpaeniformes for the first time. The mitogenomes are 16,495 bp long in C. kumu and 16,610 bp long in L. microptera. Both the mitogenomes contain 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and two non-coding regions. All PCGs are initiated by ATG codons, except for the cytochrome coxidase subunit 1 (cox1) gene. All of the tRNA genes could be folded into typical cloverleaf secondary structures, with the exception of tRNASer(AGN) lacks a dihydrouracil (DHU) stem. The control regions are both 838 bp and contain several features common to Scorpaeniformes. The phylogenetic relationships of 33 fish mitogenomes using Bayesian Inference (BI) and Maximum Likelihood (ML) based on nucleotide and amino acid sequences of 13 PCGs indicated that the mitogenome sequences could be useful in resolving higher-level relationship of Scorpaeniformes. The results may provide more insight into the mitogenome evolution of teleostean species.

Highlights

  • The fish mitogenome is a circular and double-stranded molecule ranging from 15 to 19 kilobases in length

  • Each mitogenome is composed by the typical structure of 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA), 22 transfer RNA genes and two non-coding regions

  • Both of the complete mitogenomes of Triglidae fish were typical circular molecules and had similar genome organization and structure as those found in other teleostean species

Read more

Summary

Introduction

The fish mitogenome is a circular and double-stranded molecule ranging from 15 to 19 kilobases in length It usually contains two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes (tRNAs), 13 protein-coding genes (PCGs) and two typical non-coding control regions (control region (CR) and origin of the light strand (OL)) with regulatory elements essential for transcription and replication[1, 2]. In addition to comparing nucleotide and amino acid sequence applying to molecular evolution, the complete mitogenome of tRNA secondary structure, gene rearrangement and models of the control of replication and transcription have been used extensively for deep-level phylogenetic inference in taxonomy in recent decades[5, 6]. To understand the higher-level relationships of Scorpaeniformes, in this study, we sequenced the complete mitochondrial genome of the two Triglidae species and investigated the gene content and organization compared with other species. The characterization of the C. kumu and L. microptera mitogenomes may provide more insight into the genesis and mitogenome evolution of teleostean species

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.