Abstract

A model is proposed connecting turbulence, fossil turbulence and the big-bang origin of the universe. While details are incomplete, the model is consistent with our knowledge of these processes and is supported by observations. Turbulence arises in a hot big-bang quantum gravitational dynamics scenario at Planck scales. Chaotic, eddy-like motions produce an exothermic Planck particle cascade from 10−35 m at 1032 K to 108 larger, 104 cooler, quark-gluon scales. A Planck-Kerr instability gives high Reynolds number (Re ∼ 106) turbulent combustion, space-time-energy-entropy and turbulent mixing. Batchelor-Obukhov-Corrsin turbulent-temperature fluctuations are preserved as the first fossil turbulence by inflation stretching the patterns beyond the horizon ct of causal connection faster than light speed c in time t∼ 10−33 sec. Fossil big-bang temperature turbulence reenters the horizon and imprints nucleosynthesis of H-He densities that seed fragmentation by gravity at 1012 s in the low Reynolds number plasma before its transition to gas at t∼ 1013 s and T∼ 3000 K. Multiscaling coefficients of the cosmic microwave background (CMB) temperature anisotropies closely match those for high Reynolds number turbulence, Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 299 (2002) 149-152; Bershadskii, A. and Sreenivasan, K.R., Phys. Lett. A 319 (2003) 21-23. CMB spectra support the interpretation that big-bang turbulence fossils triggered fragmentation of the viscous plasma at supercluster to galaxy mass scales from 1046 to 1042 kg, Gibson, C.H., Appl. Mech. Rev. 49 (5) (1996) 299-315; Gibson, C.H., J. Fluids Eng. 122 (2000) 830-835; Gibson, C.H., Combust. Sci. Technol. (2004, to be published).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call