Abstract

Biosynthesis of glycosylphosphatidylinositol (GPI) is initiated by transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI). This chemically simple step is genetically complex because three genes are required in both mammals and yeast. Mammalian PIG-A and PIG-C are homologous to yeast GPI3 and GPI2, respectively; however, mammalian PIG-H is not homologous to yeast GPI1. Here, we report cloning of a human homolog of GPI1 (hGPI1) and demonstrate that four mammalian gene products form a protein complex in the endoplasmic reticulum membrane. PIG-L, which is involved in the second step in GPI synthesis, GlcNAc-PI de-N-acetylation, did not associate with the isolated complex. The protein complex had GPI-GlcNAc transferase (GPI-GnT) activity in vitro, but did not mediate the second reaction. Bovine PI was utilized approximately 100-fold more efficiently than soybean PI as a substrate, and lyso PI was a very inefficient substrate. These results suggest that GPI-GnT recognizes the fatty acyl chains of PI. The unusually complex organization of GPI-GnT may be relevant to selective usage of PI and/or regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.