Abstract
The first representative of a new class of charge transfer complexes for organic semiconductors was synthesized. The reaction of p-nitroaniline (PNA) with [1,10]-phenanthroline-5,6-dione (PD) results in the formation of a stable molecular charge transfer (CT) complex PNA3-PD2 in a ratio of 3:2. The structure of the molecular CT complex PNA3-PD2 was established by X-ray diffraction studies. Using the density functional theory method, it is shown that several types of intermolecular interactions are realized in the complex: between the PNA amino group and the nitro group of another PNA molecule, carbonyl groups, and PD nitrogen atoms. Complex PNA3-PD2 is stable only in solid form. The diffuse reflectance UV–vis spectrum of PNA3-PD2 crystal powder is characterized by the intense weakly structured long-wavelength absorption band up to 650 nm. Quantum chemical calculations of the electronic structure have shown that the complex PNA3-PD2 is a straight-band semiconductor with a band gap of 2.11 eV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.