Abstract

Treatment of potassium or lithium fluorenide with MePCl2 generates the organophosphine MeP(C13H9)2, which on reaction with methyl iodide produces the phosphonium species [Me2P(C13H9)2]I in 74% yield. In the solid state, H...I contacts of < 3.3 A help generate a layered structure in which the fluorenyl rings are nearly parallel. On subsequent reaction of [Me2P(C13H9)2]I with either KH or K[N(SiMe3)2], the corresponding neutral phosphoylide, Me2P(C13H9)(C13H8), forms in 67% yield and was structurally characterized. The phosphonium iodide [Me2P(C13H9)2]I was allowed to react with Ae[N(SiMe3)2]2 (Ae = Ca, Ba), and the product from the reaction with the calcium complex was structurally identified as the salt [CaI(thf)5][Me2P(C13H8)2]. The anion, which is outside the coordination sphere of the calcium, represents the first structurally authenticated example of a free phosphonium diylide. The P-C(ylidic) bond length of 1.748(4) A reflects some partial multiple bond character. 1H and 31P NMR spectra suggest that the barium analogue is similar. Density functional theory calculations were performed on representative phosphonium diylides as an aid to interpreting the bonding in this class of compounds. Despite the strong electrostatic attraction that usually drives metal-ligand binding in highly ionic systems, calcium and barium prefer to coordinate to a single iodide ion and several neutral oxygen donors rather than to the charged diylide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.