Abstract

Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.

Highlights

  • IntroductionOf the four extant classes of arthropods (Insecta, Crustacea, Myriapoda, and Chelicerata) (Figure 1), only the Myriapoda (centipedes, millipedes, and their relatives) are currently not represented by any sequenced genome [1,2]

  • Arthropods are the most species-rich animal phylum on Earth

  • It is hard to say how typical this is for soil dwelling arthropods, as very little population data are available for such species

Read more

Summary

Introduction

Of the four extant classes of arthropods (Insecta, Crustacea, Myriapoda, and Chelicerata) (Figure 1), only the Myriapoda (centipedes, millipedes, and their relatives) are currently not represented by any sequenced genome [1,2]. This absence is unfortunate, as myriapods have recently been recognised as the living sister group to the clade that encompasses all insects and crustaceans [3,4,5,6]. Drosophila melanogaster is the best studied arthropod, it lacks many genes present in the ancestral bilaterian gene set, and chromosome rearrangements have disrupted all obvious evidence of synteny with other phyla [7]. More comprehensive sampling of arthropod genomes will establish their basic structure, and determine when unique genomic characteristics of different taxa, such as the holometabolous insects, appear

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call