Abstract

We present the first mid-infrared spectra of two cool white dwarfs obtained with the Spitzer Space Telescope. We also present 3.5-8 micron photometry for 19 cool white dwarfs with 5000K < Teff < 9000K. We perform a detailed model atmosphere analysis of these white dwarfs by fitting their UBVRIJHK and Spitzer photometry with state-of-the-art model atmospheres, and demonstrate that the optical and infrared spectral energy distributions of cool white dwarfs are well reproduced by our grid of models. Our mid-IR photometry and 7.5-14.5 micron spectrum of WD0018-267 are consistent with a Teff = 5720K, pure hydrogen white dwarf model atmosphere. On the other hand, LHS 1126 remains peculiar with significant mid-IR flux deficits in all IRAC bands and a featureless spectrum in the 5.2-7.5 micron range. Even though this deficit is attributed to collision induced absorption (CIA) due to molecular hydrogen, the shape of the deficit cannot be explained with current CIA opacity calculations. The infrared portion of the LHS 1126 spectral energy distribution is best-fit with a power law index of -1.99; identical to a Rayleigh-Jeans spectrum. This argues that the deficit may be due to an unrecognized grey-like opacity source in the infrared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.