Abstract

Abstract The large-scale magnetic cloud such as coronal mass ejections (CMEs) is the fundamental driver of the space weather. The interaction of the multiple-CMEs in interplanetary space affects their dynamic evolution and geo-effectiveness. The complex and merged multiple magnetic clouds appear as the in situ signature of the interacting CMEs. The Alfvén waves are speculated to be one of the major possible energy exchange/dissipation mechanism during the interaction. However, no such observational evidence has been found in the literature. The case studies of CME–CME collision events suggest that the magnetic and thermal energy of the CME is converted into the kinetic energy. Moreover, magnetic reconnection process is justified to be responsible for merging of multiple magnetic clouds. Here, we present unambiguous evidence of sunward torsional Alfvén waves in the interacting region after the super-elastic collision of multiple CMEs. The Walén relation is used to confirm the presence of Alfvén waves in the interacting region of multiple CMEs/magnetic clouds. We conclude that Alfvén waves and magnetic reconnection are the possible energy exchange/dissipation mechanisms during large-scale magnetic clouds collisions. This study has significant implications not only in CME-magnetosphere interactions but also in the interstellar medium where interactions of large-scale magnetic clouds are possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.