Abstract

The pikeperch (Sander lucioperca) is a fresh and brackish water Percid fish natively inhabiting the northern hemisphere. This species is emerging as a promising candidate for intensive aquaculture production in Europe. Specific traits like cannibalism, growth rate and meat quality require genomics based understanding, for an optimal husbandry and domestication process. Still, the aquaculture community is lacking an annotated genome sequence to facilitate genome-wide studies on pikeperch. Here, we report the first highly contiguous draft genome assembly of Sander lucioperca. In total, 413 and 66 giga base pairs of DNA sequencing raw data were generated with the Illumina platform and PacBio Sequel System, respectively. The PacBio data were assembled into a final assembly size of ~900 Mb covering 89% of the 1,014 Mb estimated genome size. The draft genome consisted of 1966 contigs ordered into 1,313 scaffolds. The contig and scaffold N50 lengths are 3.0 Mb and 4.9 Mb, respectively. The identified repetitive structures accounted for 39% of the genome. We utilized homologies to other ray-finned fishes, and ab initio gene prediction methods to predict 21,249 protein-coding genes in the Sander lucioperca genome, of which 88% were functionally annotated by either sequence homology or protein domains and signatures search. The assembled genome spans 97.6% and 96.3% of Vertebrate and Actinopterygii single-copy orthologs, respectively. The outstanding mapping rate (99.9%) of genomic PE-reads on the assembly suggests an accurate and nearly complete genome reconstruction. This draft genome sequence is the first genomic resource for this promising aquaculture species. It will provide an impetus for genomic-based breeding studies targeting phenotypic and performance traits of captive pikeperch.

Highlights

  • The Percidae family is a diverse and economically important group of mostly freshwater fishes that comprises 11 genera and about 275 identified species [1]

  • We employed a whole genome shotgun (WGS) strategy to produce 412.8 Gb (350X genome coverage), 74.2 Gb (66X genome coverage) and 71.4 Gb (63X genome coverage) of data corresponding to data yielded by Illumina paired-end, 2–8 kb and 2–10 kb mate-pairs libraries, respectively

  • Our estimations based on k-mer analysis have shown that the pikeperch genome is as large as 1014 Mb, which is consistent with the previous estimate of 1114 Mb, based on cytometric methods [6]

Read more

Summary

Introduction

The Percidae family is a diverse and economically important group of mostly freshwater fishes that comprises 11 genera and about 275 identified species [1]. While the global capture production of pikeperch has halved since 2010, its aquaculture production has increased two fold in the same time and exceeded 900 tons a year (Food and Agriculture Organization (FAO), 2018). This illustrates the increasing consideration of pikeperch for commercial aquafarming, and suggests that pikeperch is a niche-market species. The native range of Sander lucioperca includes the Caspian, Black, Aral and Baltic Sea drainages, where they inhabit brackish waters. This species has been anthropogenically introduced to most regions in Europe, Northern America and

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call