Abstract

This study presents the first annotated, haplotype-resolved, chromosome-scale genome of Lantana camara, a flowering shrub native to Central America and known for its dual role as an ornamental plant and an invasive species. Despite its widespread cultivation and ecological impact, the lack of a high-quality genome has hindered the investigation of traits of both ornamental and invasive. This research bridges the gap in genomic resources for L. camara, which is crucial for both ornamental breeding programs and invasive species management. Whole-genome and transcriptome sequencing were utilized to elucidate the genetic complexity of a diploid L. camara breeding line UF-T48. The genome was assembled de novo using HiFi and Hi-C reads, resulting in two phased genome assemblies with high Benchmarking Universal Single-Copy Orthologs (BUSCO) scores of 97.7%, indicating their quality. All 22 chromosomes were assembled with pseudochromosomes averaging 117 Mb. The assemblies revealed 29 telomeres and an extensive presence of repetitive sequences, primarily long terminal repeat transposable elements. The genome annotation identified 83,775 protein-coding genes, with 83% functionally annotated. In particular, the study mapped 42 anthocyanin and carotenoid candidate gene clusters and 12 herbicide target genes to the assembly, identifying 38 genes spread across the genome that are integral to flower color development and 53 genes for herbicide targeting in L. camara. This comprehensive genomic study not only enhances the understanding of L. camara’s genetic makeup but also sets a precedent for genomic research in the Verbenaceae family, offering a foundation for future studies in plant genetics, conservation, and breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call