Abstract

AbstractAn important open frontier in astrophysics is to understand how the first sources of light, the first stars and galaxies, ended the cosmic dark ages at redshifts z ≃ 15 − 20. Their formation signaled the transition from the simple initial state of the universe to one of ever increasing complexity. We here review recent progress in understanding the assembly process of the first galaxies with numerical simulations, starting with cosmological initial conditions and modelling the detailed physics of star formation. The key drivers in building up the primordial galaxies are the feedback effects from the first stars, due to their input of radiation and of heavy chemical elements in the wake of supernova explosions. In addition, the conditions inside the first galaxies are governed by the gravitationally-driven turbulence generated during the virialization of the dark matter host halo. Our theoretical predictions will be tested with upcoming near-infrared observatories, such as the James Webb Space Telecope, in the decade ahead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.