Abstract
The rapid electronic state dynamics that occur prior to charge separation in the photosynthetic reaction center of Rhodobacter sphaeroides R-26 are investigated by “two-color” wavelength-resolved pump-probe and anisotropy measurements. A narrow band (40 fs duration transform limited) pump pulse is used to selectively excite reaction center pigments: the accessory bacteriochlorophyll (B), the upper excitonic state of the special pair (Py+), or the lower excitonic state of the special pair (Py-). Population dynamics are then measured with a 12 fs duration probe pulse across the entire Qy absorption spectral region as a function of time, wavelength, and polarization. Excitation of either Py- or B results in the formation of a distinct optical band at 825 nm exhibiting polarization characteristics consistent with those expected for Py+; the band appears instantaneously upon excitation of Py- with a negative anisotropy and appears somewhat delayed after excitation of B. The dynamics observed following direct ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.