Abstract

ABSTRACT Presolar graphite grains have been extensively studied, but are limited in carbonaceous chondrites, particularly in Murchison (CM2) and Orgueil (CI1), which sampled materials from the oxidizing regions in the solar nebula. Here, we report the first discovery of presolar graphite grains from the Qingzhen (EH3) enstatite chondrite which formed under a highly reducing condition. Eighteen presolar graphite grains were identified by C-isotope mapping of the low-density fraction (1.75–1.85 g cm−3) from Qingzhen acid residue. Another 58 graphite spherules were found in different areas of the same sample mount using a scanning electron microscope and were classified into three morphologies, including cauliflower, onion, and cauliflower–onion. The Raman spectra of these spherules vary from ordered, disordered, and glassy to kerogen-like, suggestive of a wide range of thermal metamorphisms. NanoSIMS analysis of the C- and Si-isotopes of these graphite spherules confirmed 23 presolar grains. The other 35 graphite spherules have no significant isotopic anomalies, but they share similar morphologies and Raman spectra with the presolar ones. Another three grains were identified during NanoSIMS analysis. Of all the 44 presolar graphite grains identified, six grains show 28Si-excesses, suggestive of supernovae origins, and four grains are 12C- and 29,30Si-rich, consistent with low-metallicity asymptotic giant branch star origins. Another two graphite spherules have extremely low 12C/13C ratios with marginal solar Si-isotopes. The morphologies, Raman spectra, and C- and Si-isotopic distributions of the presolar graphite grains from the Qingzhen enstatite chondrite are similar to those of the low-density fractions from Murchison carbonaceous chondrites. This study suggests a homogeneous distribution of presolar graphite grains in the solar nebula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.