Abstract

The first direct measurement of compressional wave attenuation of the uppermost 650 m of oceanic crust was performed using data recorded by seafloor hydrophones and large (56–116 kg), deep, explosive sources. The site was 13 km east of the southernmost Juan de Fuca Ridge on crust 0.4 m.y. old Spectral ratios were performed between bottom refracting waves and direct water waves, adjusted for spreading losses and transmission coefficient losses. Several tests of the data were performed, demonstrating that attenuation is linearly related to frequency between 15 and 140 Hz, but frequency‐independent components of attenuation are also evident. Values of compressional wave Q cluster between 20 and 50 and do not show any systematic variation with depth over 650 m. The attenuation results also indicate the presence of heterogeneities within the crust, as the solutions for each receiver's data set are significantly different. No evidence for azimuthal variations of attenuation are supported by the data, although the data do not optimally sample a wide variation of azimuths. Our attenuation values are judged to be normal to higher than expected for the whole oceanic crust, based upon comparisons to results from synthetic seismogram modeling by others and by modeling signal to noise ratios of typical seismic refraction profiles. The results are consistent with recent laboratory measurements at ultrasonic frequencies for dry and saturated basalts at seafloor pressures and temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call