Abstract

The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call