Abstract

Primary hepatocytes are a model for studying various effects of different xenobiotics, including detoxification strategies. In this study we have isolated and cultured European seabass (Dicentrarchus labrax) primary hepatocytes and assessed gene transcription and activity of CYP1A (phase I of cellular detoxification) and ABCC1 and ABCC2 (phase III) transport proteins after exposure to benzo(a)pyrene (BaP). A dose dependent increase in Abcc2 and Cyp1a mRNA transcripts was observed in seabass primary hepatocytes upon exposure to BaP. The activity of ABC proteins, as key mediators of the multixenobiotic resistance (MXR), was further confirmed by assessing the accumulation of the model fluorescence substrate rhodamine 123 in the absence and presence of model inhibitors. A weak interaction between BaP and ABC proteins was observed. CYP1A dependent ethoxyresorufin-O-deeethylase (EROD) activity was significantly induced by the presence of BaP. After the 24h exposure period only 10% of the initial BaP was present in the incubation medium, clearly demonstrating biotransformation potential of primary seabass hepatocytes. Furthermore, the presence of the 3-hydroxybenzo(a)pyrene, a BaP metabolite, in the medium implies its active efflux. In conclusion, we showed that seabass primary hepatocytes do express important elements of the cellular detoxification machinery and may be a useful in vitro model for studying basic cellular detoxification mechanisms and their interaction with environmental contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.