Abstract
If $B_n$ denotes the time of the first birth in the $n$th generation of an age-dependent branching process of Crump-Mode type, then under a weak condition there is a constant $\gamma$ such that $B_n/n \rightarrow \gamma$ as $n \rightarrow \infty$, almost surely on the event of ultimate survival. This strengthens a result of Hammersley, who proved convergence in probability for the more special Bellman-Harris process. The proof depends on a class of martingales which arise from a `collective marks' argument.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.