Abstract

We provide finite sample properties of general regularized statistical criteria in the presence of pseudo-observations. Under the restricted strong convexity assumption of the unpenalized loss function and regularity conditions on the penalty, we derive non-asymptotic error bounds on the regularized M-estimator. This penalized framework with pseudo-observations is then applied to the M-estimation of some usual copula-based models. These theoretical results are supported by an empirical study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.