Abstract
We present a new numerical method to obtain the finite- and infinite-horizon ruin probabilities for a general continuous-time risk problem. We assume the claim arrivals are modeled by the versatile Markovian arrival process, the claim sizes are PH-distributed, and the premium rate is allowed to depend on the instantaneous risk reserve in a piecewise-constant manner driven by a number of thresholds, i.e., multi-threshold premiums. We introduce a novel sample path technique by which the ruin problems are shown to reduce to the steady-state solution of a certain multi-regime Markov fluid queue. We propose to use the already existing numerically efficient and stable numerical algorithms for such Markov fluid queues. Numerical results are presented to validate the effectiveness of the proposed method regarding the computation of the finite- and infinite-horizon ruin probabilities for risk models including those with relatively large number of thresholds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.