Abstract

AbstractIt is well known that the finite HILBERT transform T is a NOETHER (FREDHOLM) operator when considered as a map from ℒp into itself if 1 < p < 2 or 2 < p < ∞. When p = 2, the map T is not a NOETHER operator. We present two theorems which characterize the range of T in ℒ2 and, as immediate consequences, give simple expressions for its inverse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.