Abstract

The focusing non-linear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasimonochromatic waves in weakly non-linear media, and MI is considered to be the main physical mechanism for the appearance of anomalous (rogue) waves (AWs) in nature. In this paper the finite-gap method is used to study the NLS Cauchy problem for generic periodic initial perturbations of the unstable background solution of the NLS equation (here called the Cauchy problem of AWs) in the case of a finite number of unstable modes. It is shown how the finite-gap method adapts to this specific Cauchy problem through three basic simplifications enabling one to construct the solution, to leading and relevant order, in terms of elementary functions of the initial data. More precisely, it is shown that, to leading order, i) the initial data generate a partition of the time axis into a sequence of finite intervals, ii) in each interval of the partition only a subset of unstable modes are ‘visible’, and iii) for the NLS solution is approximated by the -soliton solution of Akhmediev type describing for these ‘visible’ unstable modes a non-linear interaction with parameters also expressed in terms of the initial data through elementary functions. This result explains the relevance of the -soliton solutions of Akhmediev type with in the generic periodic Cauchy problem of AWs in the case of a finite number of unstable modes. Bibliography: 118 titles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call