Abstract

The finite-element time-domain method for elastic band-structure calculations is presented in this paper. The method is based on discretizing the appropriate equations of motion by finite elements, applying Bloch boundary conditions to reduce the analysis to a single unit cell, and conducting a simulation using a standard time-integration scheme. The unit cell is excited by a wide-band frequency signal designed to enable a large number of modes to be identified from the time-history response. By spanning the desired wave-vector space within the Brillouin zone, the band structure is then robustly generated. Bloch mode shapes are computed using the well-known concept of modal analysis, especially as implemented in an experimental setting. The performance of the method is analyzed in terms of accuracy, convergence, and computation time, and is compared to the finite-difference time-domain method as well as to a direct finite-element (FE) solution of the corresponding eigenvalue problem. The proposed method is advantageous over FD-based methods for unit cells with complex geometries, and over direct FE in situations where the formulation of an eigenvalue problem is not straightforward. For example, the new method makes it possible to accurately solve a time-dependent Bloch problem, such as the case of a complex unit cell model of a topological insulator where an internal fluid flow or other externally controlled physical fields are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call