Abstract

A geometric model and finite element grid model of JQ40A gasoline engine turbocharger were set up based on the CFD software NUMECA. And the stress, deformation and vibration modal analysis on turbocharger’s compressor impeller, turbine and integrated turbine box was carried out by software ANSYS. The result shows that thin blade impeller design, weight reduction design of the turbine is beneficial to reducing the maximum structural stress, deformation and rotation frequency. The integrated design of the exhaust manifold and the turbine housing is helpful to reducing the flow resistance and the vibration frequency, so as to effectively avoid the resonance region, ensure turbocharger’s reliability and make for enhancing aerodynamic performance. Research methods and conclusions which are of important theoretical significance and practical value, provide basis for optimization design of turbocharger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.