Abstract

Abstract During spring and early summer, a surface confluence zone, often referred to as the dryline, forms in the midwestern United States between continental and maritime air masses. The dewpoint temperature across the dryline can vary in excess of 18°C in a distance of less than 10 km. The movement of the dryline varies diurnally with boundary layer growth over sloping terrain leading to an eastward apparent propagation of the dryline during the day and a westward advection or retrogression during the evening. In this study, we examine the finescale structure of a retrogressing, dryline using data taken by a Doppler lidar, a dual-channel radiometer, and serial rawinsonde ascents. While many previous studies were unable to accurately measure the vertical motions in the vicinity of the dryline, our lidar measurements suggest that the convergence at the dryline is intense with maximum vertical motions of ∼5 m s−1. The winds obtained from the Doppler lidar Measurements were combined with the equations of m...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call