Abstract

A freeze-etch replica method combined with biochemical analyses was used to investigate the ultrastructural organization of the bovine Descemet's membrane. The freeze-etch replica observations revealed that the intact Descemet's membranes were composed of stacks of two-dimensionally arranged hexagonal lattices, in which four components were resolved; (1) round densities as nodes, (2) rod-like structures connecting the densities, (3) randomly oriented fine filaments within the lattices, and (4) amorphous materials covering the lattices. When the membranes were treated with sodium dodecyl sulfate (SDS) and mercaptoethanol, only the amorphous materials were solubilized. However, both the amorphous materials and rod-like structures disappeared in SDS-mercaptoethanol-urea-treated membranes. When the membranes were treated with a very low concentration (0.0005%) of collagenase, rod-like structures and round densities remained insoluble. If the concentration was raised to 0.01%, only the round densities persisted. Comparing these data with the amino acid analysis of each fraction, the following conclusions may be drawn: rod-like structures and fine filaments contain collagenous proteins of different solubility, while round densities and amorphous materials are non-collagenous in nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.