Abstract

Honeybees turn their thorax and thus their flight motor to change direction or to fly sideways. If the bee's head were fixed to its thorax, such movements would have great impact on vision. Head movements independent of thorax orientation can stabilize gaze and thus play an important and active role in shaping the structure of the visual input the animal receives. Here, we investigate how gaze and flight control interact in a homing task. We use high-speed video equipment to record the head and body movements of honeybees approaching and departing from a food source that was located between three landmarks in an indoor flight arena. During these flights, the bees' trajectories consist of straight flight segments combined with rapid turns. These short and fast yaw turns ('saccades') are in most cases accompanied by even faster head yaw turns that start about 8 ms earlier than the body saccades. Between saccades, gaze stabilization leads to a behavioural elimination of rotational components from the optical flow pattern, which facilitates depth perception from motion parallax.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.