Abstract

Complex orthogonal space-time block codes (COSTBCs) based on generalized complex orthogonal designs (CODs) have been successfully implemented in wireless systems with multiple transmit antennas and single or multiple receive antennas. It has been shown that for a maximum rate COD with 2m-1 or 2m columns, a lower bound on decoding delay is ( <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m-1</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2m</sup> ) and this delay is achievable when the number of columns is congruent to 0, 1 , or 3 modulo 4. In this paper, the final case is addressed, and it is shown that when the number of columns is congruent to 2 modulo 4, the lower bound on decoding delay cannot be achieved. In this case, the shortest decoding delay a maximum rate COD can achieve is twice the lower bound. New techniques for analyzing CODs are introduced with connections to binary vector spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.