Abstract

Filament-bundles are ubiquitous in nature. They are composed by an assembly of flexible rods held together by elastic springs, such as found in ciliary systems and flagella. We study the static, post-transient, post-buckled configurations of a generalised filament-bundle elastica or flagella. We recur to linear and weakly non-linear analysis, as well as geometrically exact numerical solutions. The bundle cross-linking mechanics is characterised by non-local moments affecting distant parts of the bundle. This induces a bimodal post-buckling response sensitive to the interfilament sliding at the base. We report the occurrence of a novel reversed cusp catastrophe, reminiscent of the counterbend phenomenon, that folds and suppresses the saddle-node bifurcation back a pitchfork bistability landscape, found in classical elastica systems. The filament-bundle elastica can thus prevent violent jumps, non-uniqueness and hysteresis. This non-trivial folding of the imperfection-sensitivity diagram may impact bundle systems with naturally occurring buckling phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.