Abstract

The Fifteen Puzzle problem is one of the most classical problems that has captivated mathematics enthusiasts for centuries. This is mainly because of the huge size of the state space with approximately 1013 states that have to be explored, and several algorithms have been applied to solve the Fifteen Puzzle instances. In this paper, to manage this large state space, the bidirectional A* (BA*) search algorithm with three heuristics, such as Manhattan distance (MD), linear conflict (LC), and walking distance (WD), has been used to solve the Fifteen Puzzle problem. The three mentioned heuristics will be hybridized in a way that can dramatically reduce the number of states generated by the algorithm. Moreover, all these heuristics require only 25 KB of storage, but help the algorithm effectively reduce the number of generated states and expand fewer nodes. Our implementation of the BA* search can significantly reduce the space complexity, and guarantee either optimal or near-optimal solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.