Abstract
If X is a variety with an additional structure ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi $$\\end{document}, such as a marked point, a divisor, a polarization, a group structure and so forth, then it is possible to study whether the pair (X,ξ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(X,\\xi )$$\\end{document} is defined over the field of moduli. There exists a precise definition of “algebraic structures” which covers essentially all of the obvious concrete examples. We prove several formal results about algebraic structures. There are immediate applications to the study of fields of moduli of curves and finite sets in P2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {P}^{2}$$\\end{document}, but the results are completely general. Fix G a finite group of automorphisms of X, a G-structure is an algebraic structure with automorphism group equal to G. First, we prove that G-structures on X are in a 1 : 1 correspondence with twisted forms of X/G⤏BG\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$X/G\\dashrightarrow \\mathscr {B}G$$\\end{document}. Secondly we show that, under some assumptions, every algebraic structure on X is equivalent to the structure given by some 0-cycle. Third, we give a cohomological criterion for checking the existence of G-structures not defined over the field of moduli. Fourth, we identify geometric conditions about the action of G on X which ensure that every G-structure is defined over the field of moduli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.