Abstract

We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.