Abstract

We show that intermediate-sized filaments reconstituted from human epidermal keratins appear unraveled in the presence of phosphate ions. In such unraveling filaments, up to four "4.5-nm protofibrils" can be distinguished, which are helically twisted around each other in a right-handed sense. Lowering the pH of phosphate-containing preparations causes the unraveling filaments to further dissociate into "2-nm protofilaments." In addition, we find that reconstitution of keratin extracts in the presence of small amounts of trypsin yields paracrystalline arrays of 4.5-nm protofibrils with a prominent 5.4-nm axial repeat. Limited proteolysis of intact filaments immobilized on an electron microscope grid also unveils the presence of 4.5-nm protofibrils within the filament with the same 5.4-nm axial repeat. These results, together with other published data, are consistent with a 10-nm filament model based on three distinct levels of helical organization: (a) the 2-nm protofilament, consisting of multi-chain extended alpha-helical segments coiled around each other; (b) the 4.5-nm protofibril, being a multi-stranded helix of protofilaments; and (c) the 10-nm filament, being a four-stranded helix of protofibrils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.