Abstract
This paper is a survey of our work on the mathematical foundations for the Feynman-Dyson program in quantum electrodynamics (QED). After a brief discussion of the history, we provide a representation theory for the Feynman operator calculus. This allows us to solve the general initial-value problem and construct the Dyson series. We show that the series is asymptotic, thus proving Dyson’s second conjecture for quantum electrodynamics. In addition, we show that the expansion may be considered exact to any finite order by producing the remainder term. This implies that every nonperturbative solution has a perturbative expansion. Using a physical analysis of information from experiment versus that implied by our models, we reformulate our theory as a sum over paths. This allows us to relate our theory to Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences are in part due to a violation of Heisenberg’s uncertainly relations. As a by-product, we also prove Feynman’s conjecture about the relationship between the operator calculus and has path integral. Thus, providing the first rigorous justification for the Feynman formulation of quantum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.